Phytochemical and antimicrobial properties of Lavender angustifolia and Eucalyptus camaldulensis essential oils

Soghra Valizadeh, Tayebeh Fakheri, Razzagh Mahmoudi*, Farzad Katirae, Peyman Ghajarbeig

Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
Department of Food Hygiene and Aquatics, Faculty of Veterinary Medicine, University of Tabriz, P.O. Box: 516614779, Tabriz, Iran
Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
Department of Food Safety and Hygiene, School of Public Health, Qazvin University of Medical sciences, Qazvin, Iran

ARTICLE INFO

Article history:
Received 10 Sep 2014
Received in revised form
5 Dec 2014
Accepted 25 Jan 2015

Abstract

This study was aimed to investigate chemical composition, antibacterial and antifungal activities of Lavender (Lavandula angustifolia) and Eucalyptus (Eucalyptus camaldulensis) essential oils. The essential oils which prepared via distillation by Clevenger unit analyzed by GC-MS. Antibacterial effect of essential oils were tested against Listeria monocytogenes, Bacillus cereus, Salmonella typhimurium, and Escherichia coli using disc diffusion, agar well diffusion and broth microdilution methods and against Candida strains by broth micro dilution. The most inhibition zone of Lavender essential oil was related to S. typhimurium and L. monocytogenes and B. cereus in disk diffusion and B. cereus in agar well diffusion method. The lowest minimum inhibitory concentration (MIC) for Lavender essential oil was 6 μl/ml, against S. thphimurium. The MIC value of Lavender against L. monocytogenes, E. coli and B. cereus were 25, 12.5, 12.5 μl/ml respectively. The MIC value of Eucalyptus against S. thphimurium, L. monocytogenes, E. coli and B. cereus were 25, 12.5, 12.5 μl/ml respectively. The MIC value of Eucalyptus essential oil against C. albicans, C. tropicalis, C. dubliniensis and C. parapsilosis were 0.2%, 0.1%, 0.4% and 0.4%, respectively. The MIC value of Lavender essential oil against C. albicans, C. tropicalis, C. dubliniensis and C. parapsilosis were 0.4%, 0.4%, 1.6% and 1.6%, respectively.

Keywords:
Lavender
Eucalyptus
Essential oil
Antibacterial
Antifungal

1. Introduction

Expansion of microbial resistance to antibiotics is a global concern. Isolation of microbial agents less susceptible to regular antibiotics and recovery of increasing resistant isolates during antibacterial therapy is rising throughout the world which highlights the need for new principles (1). Scientific experiments since the late 19th century have documented the antimicrobial properties of some herbal components (2).

The Myrtacea family is composed of at least 3000 species in 130-150 genera, widely distributed in tropical and warm temperature regions of the world (3). The Eucalyptus belongs to Myrtaceae family and comprises of about 900 species (4). It is a tall tree native to Australia and Tasmania, successfully introduced worldwide, now extensively planted in many other countries including Iran (5). Essential oils of various plant species...
have been used for pharmaceutical (6) and cosmetic purposes (7). Essence of eucalyptus and its major component is widely used in manufacturing of softeners, pomades, antitussive syrups, toothpastess and also as flavor in many medicines. Also this component is used as fragrance in soaps, powders and other washing materials (8).

Eucalyptus trees are able to survive in between 45 degrees north and 45 degrees south latitude (9). This plant is a rich source of polyphenols and terpenoids (10). Leaves of this plant accumulate a very large amount of secondary metabolites which yield upon hydrodistillation and possess many biological effects (11, 12).

Lavender (lavandula spp.) belongs to labiatae (Lamiaceae) family and has been used either dried or as an essential oil for centuries for a variety of therapeutic and cosmetic purposes (13). It is cultivated in France, Spain and Italy. Recently, this plant is cultivated in some areas of Iran. The most common species believed to have medicinal value are L. dentata, L. angustifolia, L. latifolia, L. intermedia, L. stoechas and L. dhofarensis. The essential oils derived from Lavender has significant properties such as antioxidant and hypolipidemic (14) and anti-inflammatory (15).

Ashour studied antimicrobial and cytotoxic activities of oil and extract of leaf, stem, and flower of eucalyptus sideroxylon and eucalyptus torquata grown in Egypt. An agar diffusion method was used to analyze antimicrobial activities of essential oil and extract of eucalyptus against medically important gram-positive and gram-negative bacteria. Gram-positive bacteria were highly susceptible to oils and extracts of both Eucalyptus species. With the exception of Escherichia coli, gram-negative bacteria were resistant to the extracts, but susceptible to the oils obtained from at least one organ of E. sideroxylon and E. torquata. Although Aspergillus flavus and Aspergillus niger were resistant to the extracts, essential oils of E. sideroxylon and E. torquata generally exhibited moderate to high antifungal activities against Candida albicans, A. flavus and A. niger (16).

In the study of Benbelaid et al, unlike many other essential oils extracted from many medicinal plants which present activity only on gram positive bacteria, the essential oil of eucalyptus has shown an interesting activity on gram positive and gram negative bacteria.

The most important activity was observed in species of the genus Bacillus and Candida albicans. The bacterial species with the smallest inhibition zones was Klebsiella pneumonia and Pseudomonas aeruginosa with a diameter of 13 and 7 mm respectively at 2 µl of essential oil (17).

In another study, the antimicrobial activity of lavender and lavandin was evaluated by the Kirby-Bauer method. Antimicrobial tests showed antimicrobial activity against Shigella flexneri, Staphylococcus aureus, E.coli and Salmonella typhimurium, while Streptococcus pyogenes was not sensitive to the action of the two essential oils. The study revealed that essential oils isolated and analyzed from lavender (L. angustifolia) and lavandin (Lavandula x intermedia) display significant bactericidal effects against microorganisms (18).

The main objective of this study is to determine the chemical components, antibacterial and antifungal activities of lavender and eucalyptus essential oils and their effects on significant food pathogens and candida species by disk and agar well diffusion and microdilution methods.

2. Material and Methods

2.1. Plant material and EOs Extraction

Lavender (Lavandula angustifolia) and eucalyptus (Eucalyptus camaldulensis) were purchased from a local grocery in Tehran (capital of Iran). The plants were verified in botanical department of Tehran Medicinal Herbs Research Centre of Tehran University of Medical Science. Essential oils of aerial parts of plants were extracted via hydrodistillation for 3 h using a Clevenger unit, according to the method recommended by the European Pharmacopoeia to produce oils (19). The essential oils were put in amber color glass containers and stored at 4°C after dehydration with dry sodium sulphate until further evaluations.

2.2. Gas Chromatography- Mass Spectrometry (GC-MS) analysis

Chemical composition of these essential oils were analyzed by GC-MS. The chromatograph (Agilent 6890 UK) was equipped with an HP-5MS capillary column (30 × 0.25 mm ID × 0.25 mm film thickness) and the data were taken under the following conditions: initial temperature 50°C, temperature ramp 5°C/min, 240°C/min to 300°C (holding for 3
min), and injector temperature at 290°C. The carrier gas was helium and the split ratio was 0.8 mL/min. To confirm the analysis results, two essential oils were also analyzed by gas chromatography-mass spectrometry (Agilent 6890 gas chromatograph equipped with an Agilent 5973 mass-selective detector; Agilent UK) with the same capillary column and analytical conditions. The MS was run in electron-ionization mode with ionization energy of 70 ev (20).

2.3. Microbial strains

The antibacterial activity of essential oils were tested against two gram negative and two gram positive bacteria including *L. monocytogenes* ATCC 19118, *B. cereus* ATCC 11178, *S. typhimurium* ATCC 13311, and *E. coli* ATCC 43894. This EOs also were tested against 4 Candidal strains including *C. albicans* ATCC 10231, *C. tropicalis* ATCC 750, *C. dubliniensis* CD36 and *C. parapsilosis* ATCC 22019. In this study, the selection of bacterial species was based on the importance of these species in food contamination and foodborne poisoning in humans. Also candida species were selected because these species are the most common cause of fungal infections in human especially in immunosuppressed patients.

2.4. Antimicrobial assay

The antimicrobial assay was performed by three methods: disc diffusion, agar well diffusion and broth microdilution.

2.5. Disc diffusion assay

Sterile paper discs (6 mm in diameter) were impregnated with different levels of essential oils (14, 7, 3.5 μl) and allowed to dry. 100 μl of bacterial suspension containing 10⁶ CFU/ml were inoculated in nutrient agar (Merck, Germany). Then paper discs were impregnated in the inoculated agar. Kanamycin (30 μg/disc), Ofloxacin (5 μg/disc), Amoxicillin (25 μg/disc) (sigma) were used as positive reference standards to determine the sensitivity of one strain/isolate for each microbial species tested. The inoculated plates were incubated at 37°C for 24 h. Antimicrobial activity was evaluated by measuring the inhibition zones. Each assay in this experiment was repeated three times (21).

2.6. Agar well diffusion method

Suspensions 0.5 McF units (approximately 10⁶ CFU mL-1) of each tested microorganism were spread on the surface of nutrient agar by a sterile cotton swab. For agar well diffusion method, four wells in each plate was prepared with the sterilized standard device (0.6 cm). 200 μl of lavender and eucalyptus essential oils were dissolved in 1 ml DMSO 10%. Then serially two fold dilutions of essential oils were prepared (100 μl/ml, 50 μl/ml and 25 μl/ml). 42 μl of serial dilutions of essential oils was introduced into relevant well. The plates were incubated for 24 h at 37 °C. Then zone of inhibition was measured (22).

2.7. Broth microdilution method

A broth microdilution method was used to determine the minimum inhibitory concentration (MIC) according to Gulluce et al method (23). To determine the MIC, bacterial strain suspensions from 24 h culture were prepared. The 96-well plates were prepared by dispensing into each well 95 μl of nutrient broth and 5 μl of the inoculum. A 100 μl aliquot from the stock solutions of essential oils initially prepared at the concentration of 100 μl/ml and was added into the first wells. Then, 100 μl from their serial dilutions was transferred into four consecutive wells. The last well containing 195 μl of nutrient broth without compound and 5 μl of the inoculum on each strip was used as the negative control. The final volume in each well was 200 μl. The MIC was defined as the lowest concentration of the compounds to inhibit the growth of microorganisms. The plate was incubated 37°C for 24 h. Essential oils tested in this study were screened two times against each microorganism.

2.8. Antifungal assay

For determination of MICs, microdilution broth method was used based on the Clinical Laboratory Standards Institute (CLSI, M27-A2). Stocks and dilutions of essential oils were prepared in DMSO 10%. Final concentrations in the microdilution plates ranged from 12.5-0.02% (v/v) for each essential oil. The microdilution plates were prepared using the RPMI 1640 broth medium (Sigma) with l-glutamine and without sodium bicarbonate and buffered at pH 7.0 with 0.165 mol/l of morpholine propan sulfonic acid (MOPS) (Sigma). Yeast suspensions were prepared after vortexing and adjusting to a 0.5 Mc Farland standard transmittance at a wave length of 530 nm. The final inoculum yielded
was of $0.5 \times 10^3 - 2.5 \times 10^3$ cells/ml. Two wells served as the growth control and sterility check. MICs were visually determined at 24 h of incubation at 37 °C, and were observed for the presence or absence of growth. The growth in each well was compared with that of the growth control EO free well (24).

3. Results

3.1. Chemical compositions of EOs

The results obtained by GC-MS analysis of essential oils of eucalyptus and lavender are presented in Table 1 and 2. Twenty one components, which represented 83.63% of eucalyptus and 21 constituents which represents 95.24% of lavender essential oils were identified. The eucalyptus essential oil was characterized by high amounts of isopentyl isovalerate (19.12%), α-pinene (12.6%), trans-pinocarveol (11.4%) and β-pinene (8.81%). The lavender essential oil was characterized by high amounts of cis-3-Hexen-1-ol (18%), β-Bisabolene (17.17%), and α-farnesene (12.31%).

3.2. Disc and agar well diffusion assay

The eucalyptus and lavender essential oils were tested for antibacterial activity against foodborne pathogenic bacteria. The results of the antibacterial activities of essential oils by disc diffusion and agar well diffusion are shown in Table 3 and 4. According to the disc diffusion method gram positive bacteria were more sensitive to EOs. Results of disk diffusion assay showed high activity of eucalyptus essential oil against B. cereus and L.

3.3. Broth microdilution method

The findings clearly indicated that the essential oils of lavender and eucalyptus had antibacterial activity against a number of bacteria. The lowest MIC value for lavender was 6 μl/ml against S. typhimurium. The MIC value of lavender against L. monocytogenes, E. coli and B. cereus were 12.5 μl/ml, respectively. MIC of eucalyptus against S. typhimurium, L. monocytogenes, E. coli and B. cereus were 25, 12.5, and 12.5 μl/ml, respectively.

3.4. Antifungal assay

Table 5 illustrates the inhibitory activity of essential oils on the growth of different Candida species including C. albicans, C. parapsilosis, C. tropicalis, C. dubliniensis. As shown in Table 5, MICs of eucalyptus essential oil against C. albicans, C. tropicalis, C. dubliniensis and C. parapsilosis were 0.2%, 0.1%, 0.4% and 0.4%, respectively. MICs of lavender essential oil against C. albicans, C. tropicalis, C. dubliniensis and C. parapsilosis were 0.4%, 0.4%, 1.6% and 1.6%, respectively.

4. Discussion

Twenty two components, which represents 83.63% of eucalyptus essential oil and 21 constituents which represents 95.24% of lavender essential oils were identified. The eucalyptus essential oil was characterized by

| Table 1. Chemical compositions of eucalyptus (Eucalyptus camaldulensis) essential oil
<table>
<thead>
<tr>
<th>Number</th>
<th>Component</th>
<th>percent</th>
<th>RI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>α-pinene</td>
<td>12.6</td>
<td>935</td>
</tr>
<tr>
<td>2</td>
<td>Sabineone</td>
<td>0.20</td>
<td>947</td>
</tr>
<tr>
<td>3</td>
<td>3-Carene</td>
<td>0.78</td>
<td>950</td>
</tr>
<tr>
<td>4</td>
<td>β-pinene</td>
<td>8.81</td>
<td>976</td>
</tr>
<tr>
<td>5</td>
<td>α-phellandrene</td>
<td>4.24</td>
<td>1003</td>
</tr>
<tr>
<td>6</td>
<td>δ-cymene</td>
<td>5.60</td>
<td>1024</td>
</tr>
<tr>
<td>7</td>
<td>1,8-Cineole</td>
<td>0.16</td>
<td>1027</td>
</tr>
<tr>
<td>8</td>
<td>Isopentyl</td>
<td>19.12</td>
<td>1105</td>
</tr>
<tr>
<td>9</td>
<td>Trans-pinocarveol</td>
<td>11.40</td>
<td>1136</td>
</tr>
<tr>
<td>10</td>
<td>cis-Verbenol</td>
<td>0.74</td>
<td>1140</td>
</tr>
<tr>
<td>11</td>
<td>Pinocarveol</td>
<td>3.84</td>
<td>1161</td>
</tr>
<tr>
<td>12</td>
<td>Terpinen-4-ol</td>
<td>0.85</td>
<td>1175</td>
</tr>
<tr>
<td>13</td>
<td>α-terpineol</td>
<td>0.63</td>
<td>1194</td>
</tr>
<tr>
<td>14</td>
<td>Myrtenal</td>
<td>1.85</td>
<td>1225</td>
</tr>
<tr>
<td>15</td>
<td>α-Guaiene</td>
<td>0.61</td>
<td>1435</td>
</tr>
<tr>
<td>16</td>
<td>Trans-calamenene</td>
<td>0.74</td>
<td>1538</td>
</tr>
<tr>
<td>17</td>
<td>Spathulenol</td>
<td>2.52</td>
<td>1572</td>
</tr>
<tr>
<td>18</td>
<td>Viridiflorol</td>
<td>4.74</td>
<td>1585</td>
</tr>
<tr>
<td>19</td>
<td>Longiborneol</td>
<td>1.56</td>
<td>1598</td>
</tr>
<tr>
<td>20</td>
<td>1-Epi-cubeno1</td>
<td>0.43</td>
<td>1628</td>
</tr>
<tr>
<td>21</td>
<td>β-Eudesmol</td>
<td>1.25</td>
<td>1650</td>
</tr>
<tr>
<td>22</td>
<td>α-Eudesmol</td>
<td>0.88</td>
<td>1653</td>
</tr>
</tbody>
</table>

Total 83.63
high amounts of isopentyl isovalerate (19.12%), α-pinene (12.6%), trans-pinocarveol (11.4%) and β-pinene (8.81%). Akin et al reported ethanone, eucalyptol, caryophyllene and carvacrol as main components of E. camuldensis (25). In other studies, the major components of eucalyptus essential oils were 1,8 cineole, pinene and spathulenol (6, 26). The lavender essential oil was characterized by high amounts of Carvacrol (21.84%), cis-hex-3-en-1-ol (18%), β-Bisabolene (17.17%), α-farnesene (12.31%). Xiaolan et al reported that 1,5-Dimethyl-1-vinyl-4-hexenylbutyrate was the main constituent of lavender essential oil (43.73%), followed by 1,3,7-Octatriene, 3,7-dimethyl-(25.1%), Eucalyptol (7.32%), and Camphor (3.79%) (27). The observed differences in the constituents of essential oils may be due to different environmental and genetic factors, different chemotypes and the nutritional status of the plants.

Results of this study revealed that the essential oils of lavender and eucalyptus have antibacterial activity with varying magnitudes. The zone of inhibition above 7 mm in diameter was taken as positive result. Generally most of the tested organisms were sensitive to essential oils. The antimicrobial assay showed that different microorganisms tested had different susceptibility to the essential oils. In general, B. cereus as the gram positive bacteria was more sensitive to the EOs compared to other microorganisms. Ashour et al (16) and Benblaid et al. (17) showed that eucalyptus EO has potential antibacterial effect on gram positive bacteria especially on Bacillus cereus. According to similar research, the inhibition zone of essential oils increased by the increase of essential oil levels in all the microorganisms tested (28-30).

The MIC results are in agreement with the results of agar methods, the highest MIC was observed in S. thyphimurium and minimum zone of inhibition was measured in both agar methods for this bacteria. Comparison of the inhibition zone of essential oils with standard antibiotics showed that inhibition zone of the higher amount of essential oils is similar to Kanamycin and Amoxicillin. These essential oils are potential antibacterial agents and can be used to prevent antibiotic resistant.

In our study, the lowest MIC value of Lavender essential oil was related to C. albicans (0.4%) and C. tropicalis (0.4%). The minimum MIC value of Eucalyptus EO was related to C. tropicalis (0.1%). the essential oil of Eucalyptus was more effective against Candidal species compared to Lavender essential oil. Ashour studied antifungal effect of extracts and essential oils of Eucalyptus sideroxylon and Eucalyptus torquata on some fungal strains. Aspergillus flavus and Aspergillus niger were resistant to the extracts. Essential oils exhibited moderate to high antifungal activities against Candida albicans, A flavus and A niger (16). Benbelaid et al reported high activity of eucalyptus essential oil against Candida albicans (17). Aligiannis et al (31) proposed classification for plant materials, based on MIC results as follows: strong inhibitors-MIC up to 0.5 mg/ml; moderate inhibitors- MIC between 0.6 and 1.5 mg/ml and weak inhibitors-MIC above 1.6 mg/ml. Based on the above classification, the eucalyptus essential oil has

Table 3. Comparison of inhibition zone of lavender (Lavandula angustifolia) and eucalyptus (Eucalyptus camaldulensis) essential oils with inhibition zone (mm) of standard antibiotics in disk diffusion method

<table>
<thead>
<tr>
<th>Bacterial strain</th>
<th>Lavender EO (μl)</th>
<th>Eucalyptus EO (μl)</th>
<th>Standard antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14</td>
<td>7</td>
<td>3.5</td>
</tr>
<tr>
<td>S. thyphimurium</td>
<td>14</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>L.monocytogenes</td>
<td>12</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>B. cereus</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E. coli</td>
<td>14</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>

EO: essential oil; -: no inhibition, K: Kanamycin, Ofx: Ofloxacin, Am: Amoxicillin

Table 4. Inhibition zone of different concentrations of lavender (Lavandula angustifolia) and eucalyptus (Eucalyptus camaldulensis) essential oils in agar well diffusion method

<table>
<thead>
<tr>
<th>Bacterial strains</th>
<th>Lavender EO (μl/ml)</th>
<th>Eucalyptus EO (μl/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>S. thyphimurium</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>B. cereus</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>E. coli</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

EO: Essential Oil

Table 5. The minimum inhibitory concentration (MIC) values of fungal strains

<table>
<thead>
<tr>
<th>Fungal strains</th>
<th>Lavender EO</th>
<th>Eucalyptus EO</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>0.4%</td>
<td>0.2%</td>
</tr>
<tr>
<td>C. dubliniensis</td>
<td>1.6%</td>
<td>0.4%</td>
</tr>
<tr>
<td>C. parapsilosis</td>
<td>1.6%</td>
<td>0.4%</td>
</tr>
<tr>
<td>C. tropicalis</td>
<td>0.4%</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

EO: Essential Oil
strong activity against all fungal strains. Lavender essential oil antifungal activity against C. albicans and C. tropicalis was strong and against C. dubliniensis and C. parapsilosis was nearer to weak. This result shows that eucalyptus essential oil is more effective on Candida strains compared to lavender essential oil.

5. Conclusion
The study demonstrates that the eucalyptus essential oil has strong activity against all tested fungal strains. The antifungal activity of Lavender essential oil against C. albicans and C. tropicalis was strong and it was nearer to weak against C. dubliniensis and C. parapsilosis. This result demonstrates that eucalyptus essential oil is more effective on Candidal strains compared to lavender essential oil. Results of our study suggest a wider use of these essential oils in pharmaceutical and food preparations.

Conflict of Interests
Authors have no conflict of interest.

Acknowledgement
The authors gratefully acknowledge the Microbiology Department of Veterinary Faculty of Tabriz University, Iran, for providing microbial strains.

References
20. Mahmoudi R, Tajik H, Ehsani A, A. FA, Zare P. Effects of Mentha longifolia L. EO on

